Posts Tagged ‘believable agents’

Meta-Level Behavior Adaptation in Real-Time Strategy Games

AI agents designed for real-time settings need to adapt themselves to changing circumstances to improve their performance and remedy their faults. Agents typically designed for computer games, however, lack this ability. The lack of adaptivity causes a break in player experience when they repeatedly fail to behave properly in circumstances unforeseen by the game designers.

We present an AI technique for game-playing agents that helps them adapt to changing game circumstances. The agents carry out runtime adaptation of their behavior sets by monitoring and reasoning about their behavior execution and using this reasoning to dynamically revise their behaviors. The evaluation of the behavior adaptation approach in a complex real-time strategy game shows that the agents adapt themselves and improve their performance by revising their behavior sets appropriately.

Read the paper:

Meta-Level Behavior Adaptation in Real-Time Strategy Games

by Manish Mehta, Santi Ontañon, Ashwin Ram

ICCBR-10 Workshop on Case-Based Reasoning for Computer Games, Alessandria, Italy, 2010.

User-Generated AI for Interactive Digital Entertainment

CMU Seminar

User-generated content is everywhere: photos, videos, news, blogs, art, music, and every other type of digital media on the Social Web. Games are no exception. From strategy games to immersive virtual worlds, game players are increasingly engaged in creating and sharing nearly all aspects of the gaming experience: maps, quests, artifacts, avatars, clothing, even games themselves. Yet, there is one aspect of computer games that is not created and shared by game players: the AI. Building sophisticated personalities, behaviors, and strategies requires expertise in both AI and programming, and remains outside the purview of the end user.

To understand why Game AI is hard, we need to understand how it works. AI can take digital entertainment beyond scripted interactions into the arena of truly interactive systems that are responsive, adaptive, and intelligent. I discuss examples of AI techniques for character-level AI (in embedded NPCs, for example) and game-level AI (in the drama manager, for example). These types of AI enhance the player experience in different ways. The techniques are complicated and are usually implemented by expert game designers.

I argue that User-Generated AI is the next big frontier in the rapidly growing Social Gaming area. From Sims to Risk to World of Warcraft, end users want to create, modify, and share not only the appearance but the “minds” of their characters. I present my recent research on intelligent technologies to assist Game AI authors, and show the first Web 2.0 application that allows average users to create AIs and challenge their friends to play them—without programming. I conclude with some thoughts about the future of AI-based Interactive Digital Entertainment.

CMU Robotics & Intelligence Seminar, September 28, 2009
Carnegie-Mellon University, Pittsburgh, PA.
MIT Media Lab Colloquium, January 25, 2010
Massachusetts Institute of Technology, Cambridge, MA.
Stanford Media X Philips Seminar, February 1, 2010
Stanford University, Stanford, CA.
Pixar Research Seminar, February 2, 2010

Try it yourself:
Learn more about the algorithms:
View the talk:

View the slides:

Drama Management and Player Modeling for Interactive Fiction Games

A growing research community is working towards employing drama management components in story-based games. These components gently guide the story towards a narrative arc that improves the player’s gaming experience. In this paper we evaluate a novel drama management approach deployed in an interactive fiction game called Anchorhead. This approach uses player’s feedback as the basis for guiding the personalization of the interaction.

The results indicate that adding our Case-based Drama manaGer (C-DraGer) to the game guides the players through the interaction and provides a better overall player experience. Unlike previous approaches to drama management, this paper focuses on exhibiting the success of our approach by evaluating results using human players in a real game implementation. Based on this work, we report several insights on drama management which were possible only due to an evaluation with real players.

Read the paper:

Drama Management and Player Modeling for Interactive Fiction Games

by Manu Sharma, Santi Ontañón, Manish Mehta, Ashwin Ram

Computational Intelligence, 26(2):183-211, 2010.

Run-Time Behavior Adaptation for Real-Time Interactive Games

Intelligent agents working in real-time domains need to adapt to changing circumstance so that they can improve their performance and avoid their mistakes. AI agents designed for interactive games, however, typically lack this ability. Game agents are traditionally implemented using static, hand-authored behaviors or scripts that are brittle to changing world dynamics and cause a break in player experience when they repeatedly fail. Furthermore, their static nature causes a lot of effort for the game designers as they have to think of all imaginable circumstances that can be encountered by the agent. The problem is exacerbated as state-of-the-art computer games have huge decision spaces, interactive user input, and real-time performance that make the problem of creating AI approaches for these domains harder.

In this paper we address the issue of non-adaptivity of game playing agents in complex real-time domains. The agents carry out run-time adaptation of their behavior sets by monitoring and reasoning about their behavior execution to dynamically carry out revisions on the behaviors. The behavior adaptation approaches has been instantiated in two real-time interactive game domains. The evaluation results shows that the agents in the two domains successfully adapt themselves by revising their behavior sets appropriately.

Read the paper:

Run-Time Behavior Adaptation for Real-Time Interactive Games

by Manish Mehta, Ashwin Ram

IEEE Transactions on Computational Intelligence and AI in Games, Vol. 1, No. 3, September 2009

Emotional Memory and Adaptive Personalities

Believable agents designed for long-term interaction with human users need to adapt to them in a way which appears emotionally plausible while maintaining a consistent personality. For short-term interactions in restricted environments, scripting and state machine techniques can create agents with emotion and personality, but these methods are labor intensive, hard to extend, and brittle in new environments. Fortunately, research in memory, emotion and personality in humans and animals points to a solution to this problem. Emotions focus an animal’s attention on things it needs to care about, and strong emotions trigger enhanced formation of memory, enabling the animal to adapt its emotional response to the objects and situations in its environment. In humans this process becomes reflective: emotional stress or frustration can trigger re-evaluating past behavior with respect to personal standards, which in turn can lead to setting new strategies or goals.

To aid the authoring of adaptive agents, we present an artificial intelligence model inspired by these psychological results in which an emotion model triggers case-based emotional preference learning and behavioral adaptation guided by personality models. Our tests of this model on robot pets and embodied characters show that emotional adaptation can extend the range and increase the behavioral sophistication of an agent without the need for authoring additional hand-crafted behaviors.

Read the paper:

Emotional Memory and Adaptive Personalities

by Anthony Francis, Manish Mehta, Ashwin Ram

Handbook of Research on Synthetic Emotions and Sociable Robotics: New Applications in Affective Computing and Artificial Intelligence, IGI Global, 2009

Creating Behavior Authoring Environments for Everyday Users

The design of interactive experiences is increasingly important in our society. Examples include interactive media, computer games, and interactive portals. There is increasing interest in modes of interaction with virtual characters, as they represent a natural way for humans to interact. Creating such characters is a complex task, requiring both creative skills (to design personalities, emotions, gestures, behaviors) and programming skills (to code these in a scripting or programming language). There is little understanding of how the behavior authoring process can be simplified with easy-to-use authoring environments that can support the cognitive needs of everyday users and help them at every step to easily carry out this creative task.

Our research focuses on behavior authoring environments that not only make it easy for novices/everyday users to create characters but also provide them scaffolding in designing these interactive experiences. In this paper we present results from a user study with a paper prototype of an authoring environment that is aimed to allow everyday users to create virtual characters. The study aims at determining whether typical computer users are able to create character personalities in specific scenarios and think about characters’ mental states, and if so, then what kinds of user interfaces would be suitable for this authoring environment.

Read the paper:

Creating Behavior Authoring Environments for Everyday Users

by Manish Mehta, Christina Lacey, Iulian Radu, Abhishek Jain, Ashwin Ram

International Conference on Computer Games, Multimedia, and Allied Technologies (CGAT-09), Singapore, May 2009

Argumentation-Based Information Exchange in Prediction Markets

We investigate how argumentation processes among a group of agents may affect the outcome of group judgments. In particular we focus on prediction markets (also called information markets). We investigate how the existence of social networks (that allow agents to argue with one another to improve their individual predictions) effect on group judgments.

Social networks allow agents to exchange information about the group judgment by arguing about the most likely choice based on their individual experience. We develop an argumentation-based deliberation process by which the agents acquire new and relevant information. Finally, we experimentally assess how different social network connectivity affect group judgment.

Read the paper:

Argumentation-based Information Exchange in Prediction Markets

by Santi Ontañón and Enric Plaza

in ArgMAS 2008, pp. 181 – 196

Adaptive Computer Games: Easing the Authorial Burden

Game designers usually create AI behaviors by writing scripts that describe the reactions to all imaginable circumstances within the confines of the game world. The AI Programming Wisdom series provides a good overview of current scripting techniques used in the game industry. Scripting is expensive and it’s hard to plan. So, behaviors could be repetitive (resulting in breaking the atmosphere) or behaviors could fail to achieve their desired purpose. On one hand, creating AI with a rich behavior set requires a great deal of engineering effort on the part of game developers. On the other hand, the rich and dynamic nature of game worlds makes it hard to imagine and plan for all possible scenarios. When behaviors fail to achieve their desired purpose, the game AI is unable to identify such failure and will continue executing them. The techniques described in this article specifically deal with these issues.

Behavior (or script) creation for computer games typically involves two steps: a) generating a first version of behaviors using a programming language, b) debugging and adapting the behavior via experimentation. In this article we present techniques that aim at assisting the author from carrying out these two steps manually: behavior learning and behavior adaptation.

In the behavior learning process, the game developers can specify the AI behavior by demonstrating it to the system instead of having to code the behavior using a programming language. The system extracts behaviors from these expert demonstrations and stores them. Then, at performance time, the system retrieves appropriate behaviors observed from the expert and revises them in response to the current situation it is dealing with (i.e., to the current game state).

In the behavior adaptation process, the system monitors the performance of these learned behaviors at runtime. The system keeps track of the status of the executing behaviors, infer from their execution trace what might be wrong, and perform appropriate adaptations to the behaviors once the game is over. This approach to behavior transformation enables the game AI to reflect on the issues in the learnt behaviors from expert demonstration and revises them after post analysis of things that went wrong during the game. These set of techniques allow non-AI experts to define behaviors through demonstration that can then be adapted to different situations thereby reducing the development effort required to address all contingencies in a complex game.

Read the paper:

Adaptive Computer Games: Easing the Authorial Burden

by Manish Mehta, Santi Ontañón, Ashwin Ram

AI Game Programming Wisdom 4 (AIGPW4), Steve Rabin (editor), Charles River Media, 2008

Driving Interactive Drama Research through Building Complete Systems

Interactive drama presents one of the most challenging applications of autonomous characters, requiring characters to simultaneously engage in moment-by-moment personality-rich physical behavior, exhibit conversational competencies, and participate in a dynamically developing story arc. One way to advance the field and continue to make exciting progress is to develop building blocks needed for creating these interactive experiences that are situated in a complete system. Our research goals presented in this paper are driven by this perspective of developing a complete interactive drama architecture. Specifically, we discuss the different research challenges that we are interested in pursuing at the different building blocks required to build a complete interactive drama. We also discuss the interactive drama domain we are developing and present our initial steps in handling the research challenges.

Read the paper:

Driving Interactive Drama Research through Building Complete Systems

by Manish Mehta, Santi Ontañón, Ashwin Ram

AAAI-07 Spring Symposium on Intelligent Narrative Technologies, Arlington, VA, November 2009

Emotionally Driven Natural Language Generation for Personality Rich Characters in Interactive Games

Natural Language Generation for personality rich characters represents one of the important directions for believable agents research. The typical approach to interactive NLG is to hand-author textual responses to different situations. In this paper we address NLG for interactive games. Specifically, we present a novel template-based system that provides two distinct advantages over existing systems. First, our system not only works for dialogue, but enables a character’s personality and emotional state to influence the feel of the utterance. Second, our templates are resuable across characters, thus decreasing the burden on the game author. We briefly describe our system and present results of a preliminary evaluation study.

Read the paper:

Emotionally Driven Natural Language Generation for Personality Rich Characters in Interactive Games

by Christina Strong, Kinshuk Mishra, Manish Mehta, Alistair Jones, Ashwin Ram

Third Conference on Artificial Intelligence for Interactive Digital Entertainment (AIIDE-07), Stanford, CA, June 2007