Posts Tagged ‘real-time cbr’

Case-Based Reasoning and User-Generated AI for Real-Time Strategy Games

Creating AI for complex computer games requires a great deal of technical knowledge as well as engineering effort on the part of game developers. This paper focuses on techniques that enable end-users to create AI for games without requiring technical knowledge by using case-based reasoning techniques.

AI creation for computer games typically involves two steps: a) generating a first version of the AI, and b) debugging and adapting it via experimentation. We will use the domain of real-time strategy games to illustrate how case-based reasoning can address both steps.

Read the paper:

Case-Based Reasoning and User-Generated AI for Real-Time Strategy Games

by Santi Ontañón and Ashwin Ram

In P. Gonzáles-Calero & M. Gomez-Martín (ed.), AI for Games: State of the Practice, 2011.
www.cc.gatech.edu/faculty/ashwin/papers/er-11-02.pdf

MMPM: A Generic Platform for Case-Based Planning Research

Computer games are excellent domains for research and evaluation of AI and CBR techniques. The main drawback is the effort needed to connect AI systems to existing games. This paper presents MMPM, a middleware platform that supports easy connection of AI techniques with games. We will describe the MMPM architecture, and compare with related systems such as TIELT.

Read the paper:

MMPM: A Generic Platform for Case-Based Planning Research

by Pedro Pablo Gómez-Martín, David Llansó, Marco Antonio Gómez-Martín, Santiago Ontañón, Ashwin Ram

ICCBR-2010 Workshop on Case-Based Reasoning for Computer Games
www.cc.gatech.edu/faculty/ashwin/papers/er-10-03.pdf

Real-Time Case-Based Reasoning for Interactive Digital Entertainment

(Click image to view the video – it’s near the bottom of the new page.)

User-generated content is everywhere: photos, videos, news, blogs, art, music, and every other type of digital media on the Social Web. Games are no exception. From strategy games to immersive virtual worlds, game players are increasingly engaged in creating and sharing nearly all aspects of the gaming experience: maps, quests, artifacts, avatars, clothing, even games themselves. Yet, there is one aspect of computer games that is not created and shared by game players: the AI. Building sophisticated personalities, behaviors, and strategies requires expertise in both AI and programming, and remains outside the purview of the end user.

To understand why authoring Game AI is hard, we need to understand how it works. AI can take digital entertainment beyond scripted interactions into the arena of truly interactive systems that are responsive, adaptive, and intelligent. I will discuss examples of AI techniques for character-level AI (in embedded NPCs, for example) and game-level AI (in the drama manager, for example). These types of AI enhance the player experience in different ways. The techniques are complicated and are usually implemented by expert game designers.

I propose an alternative approach to designing Game AI: Real-Time CBR. This approach extends CBR to real-time systems that operate asynchronously during game play, planning, adapting, and learning in an online manner. Originally developed for robotic control, Real-Time CBR can be used for interactive games ranging from multiplayer strategy games to interactive believable avatars in virtual worlds.

As with any CBR technique, Real-Time CBR integrates problem solving with learning. This property can be used to address the authoring problem. I will show the first Web 2.0 application that allows average users to create AIs and challenge their friends to play them—without programming. I conclude with some thoughts about the role of CBR in AI-based Interactive Digital Entertainment.

Keynote talk at the Eighteenth Conference on Pattern Recognition and Artificial Intelligence (RFIA-12), Lyon, France, February 5, 2012.
Slides and video here: rfia2012.liris.cnrs.fr/doku.php?id=pub:ram
 
Keynote talk at the Eleventh Scandinavian Conference on Artificial Intelligence (SCAI-11), Trondheim, Norway, May 25, 2011.
 
Keynote talk at the 2010 International Conference on Case-Based Reasoning (ICCBR-10), Alessandria, Italy, July 22, 2010.
 
GVU Brown Bag talk, October 14, 2010. Watch the talk here: www.gvu.gatech.edu/node/4320 
 
Try it yourself:
Learn more about the algorithms:
View the talk:
www.sais.se/blog/?p=57

View the slides:

Meta-Level Behavior Adaptation in Real-Time Strategy Games

AI agents designed for real-time settings need to adapt themselves to changing circumstances to improve their performance and remedy their faults. Agents typically designed for computer games, however, lack this ability. The lack of adaptivity causes a break in player experience when they repeatedly fail to behave properly in circumstances unforeseen by the game designers.

We present an AI technique for game-playing agents that helps them adapt to changing game circumstances. The agents carry out runtime adaptation of their behavior sets by monitoring and reasoning about their behavior execution and using this reasoning to dynamically revise their behaviors. The evaluation of the behavior adaptation approach in a complex real-time strategy game shows that the agents adapt themselves and improve their performance by revising their behavior sets appropriately.

Read the paper:

Meta-Level Behavior Adaptation in Real-Time Strategy Games

by Manish Mehta, Santi Ontañon, Ashwin Ram

ICCBR-10 Workshop on Case-Based Reasoning for Computer Games, Alessandria, Italy, 2010.
www.cc.gatech.edu/faculty/ashwin/papers/er-10-02.pdf

User-Generated AI for Interactive Digital Entertainment

CMU Seminar

User-generated content is everywhere: photos, videos, news, blogs, art, music, and every other type of digital media on the Social Web. Games are no exception. From strategy games to immersive virtual worlds, game players are increasingly engaged in creating and sharing nearly all aspects of the gaming experience: maps, quests, artifacts, avatars, clothing, even games themselves. Yet, there is one aspect of computer games that is not created and shared by game players: the AI. Building sophisticated personalities, behaviors, and strategies requires expertise in both AI and programming, and remains outside the purview of the end user.

To understand why Game AI is hard, we need to understand how it works. AI can take digital entertainment beyond scripted interactions into the arena of truly interactive systems that are responsive, adaptive, and intelligent. I discuss examples of AI techniques for character-level AI (in embedded NPCs, for example) and game-level AI (in the drama manager, for example). These types of AI enhance the player experience in different ways. The techniques are complicated and are usually implemented by expert game designers.

I argue that User-Generated AI is the next big frontier in the rapidly growing Social Gaming area. From Sims to Risk to World of Warcraft, end users want to create, modify, and share not only the appearance but the “minds” of their characters. I present my recent research on intelligent technologies to assist Game AI authors, and show the first Web 2.0 application that allows average users to create AIs and challenge their friends to play them—without programming. I conclude with some thoughts about the future of AI-based Interactive Digital Entertainment.

CMU Robotics & Intelligence Seminar, September 28, 2009
Carnegie-Mellon University, Pittsburgh, PA.
MIT Media Lab Colloquium, January 25, 2010
Massachusetts Institute of Technology, Cambridge, MA.
Stanford Media X Philips Seminar, February 1, 2010
Stanford University, Stanford, CA.
Pixar Research Seminar, February 2, 2010

Try it yourself:
Learn more about the algorithms:
View the talk:
www.sais.se/blog/?p=57

View the slides:

Run-Time Behavior Adaptation for Real-Time Interactive Games

Intelligent agents working in real-time domains need to adapt to changing circumstance so that they can improve their performance and avoid their mistakes. AI agents designed for interactive games, however, typically lack this ability. Game agents are traditionally implemented using static, hand-authored behaviors or scripts that are brittle to changing world dynamics and cause a break in player experience when they repeatedly fail. Furthermore, their static nature causes a lot of effort for the game designers as they have to think of all imaginable circumstances that can be encountered by the agent. The problem is exacerbated as state-of-the-art computer games have huge decision spaces, interactive user input, and real-time performance that make the problem of creating AI approaches for these domains harder.

In this paper we address the issue of non-adaptivity of game playing agents in complex real-time domains. The agents carry out run-time adaptation of their behavior sets by monitoring and reasoning about their behavior execution to dynamically carry out revisions on the behaviors. The behavior adaptation approaches has been instantiated in two real-time interactive game domains. The evaluation results shows that the agents in the two domains successfully adapt themselves by revising their behavior sets appropriately.

Read the paper:

Run-Time Behavior Adaptation for Real-Time Interactive Games

by Manish Mehta, Ashwin Ram

IEEE Transactions on Computational Intelligence and AI in Games, Vol. 1, No. 3, September 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-09-09.pdf

Using Meta-Reasoning to Improve the Performance of Case-Based Planning

Case-based planning (CBP) systems are based on the idea of reusing past successful plans for solving new problems. Previous research has shown the ability of meta-reasoning approaches to improve the performance of CBP systems. In this paper we present a new meta-reasoning approach for autonomously improving the performance of CBP systems that operate in real-time domains.

Our approach uses failure patterns to detect anomalous behaviors, and it can learn from experience which of the failures detected are important enough to be fixed. Finally, our meta-reasoning approach can exploit both successful and failed executions for meta-reasoning.

We illustrate its benefits with experimental results from a system implementing our approach called Meta-Darmok in a real-time strategy game. The evaluation of Meta-Darmok shows that the system successfully adapts itself and its performance improves through appropriate revision of the case base.

Read the paper:

Using Meta-Reasoning to Improve the Performance of Case-Based Planning

by Manish Mehta, Santi Ontañón, Ashwin Ram

International Conference on Case-Based Reasoning (ICCBR-09), Seattle, July 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-09-06.pdf

Learning from Human Demonstrations for Real-Time Case-Based Planning

One of the main bottlenecks in deploying case-based planning systems is authoring the case-base of plans. In this paper we present a collection of algorithms that can be used to automatically learn plans from human demonstrations. Our algorithms are based on the basic idea of a plan dependency graph, which is a graph that captures the dependencies among actions in a plan. Such algorithms are implemented in a system called Darmok 2 (D2), a case-based planning system capable of general game playing with a focus on real-time strategy (RTS) games. We evaluate D2 with a collection of three different games with promising results.

Read the paper:

Learning from Human Demonstrations for Real-Time Case-Based Planning

by Santi Ontañón, Kane Bonnette, Praful Mahindrakar, Marco Gómez-Martin, Katie Long, Jai Radhakrishnan, Rushabh Shah, Ashwin Ram

IJCAI-09 Workshop on Learning Structural Knowledge from Observations, Pasadena, CA, July 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-09-04.pdf

On-Line Case-Based Planning

Some domains, such as real-time strategy (RTS) games, pose several challenges to traditional planning and machine learning techniques. In this paper, we present a novel on-line case-based planning architecture that addresses some of these problems. Our architecture addresses issues of plan acquisition, on-line plan execution, interleaved planning and execution and on-line plan adaptation. We also introduce the Darmok system, which implements this architecture in order to play Wargus (an open source clone of the well-known RTS game Warcraft II). We present empirical evaluation of the performance of Darmok and show that it successfully learns to play the Wargus game.

Read the paper:

On-Line Case-Based Planning

by Santi Ontañón, Neha Sugandh, Kinshuk Mishra, Ashwin Ram

Computational Intelligence, 26(1):84-119, 2010.
www.cc.gatech.edu/faculty/ashwin/papers/er-09-08.pdf
www3.interscience.wiley.com/journal/123263882/abstract

Real-Time Plan Adaptation for Case-Based Planning in Real-Time Strategy Games

Case-based planning (CBP) is based on reusing past successful plans for solving new problems. CBP is particularly useful in environments where the large amount of time required to traverse extensive search spaces makes traditional planning techniques unsuitable. In particular, in real-time domains, past plans need to be retrieved and adapted in real time and efficient plan adaptation techniques are required.

We have developed real-time adaptation techniques for case-based planning and specifically applied them to the domain of real-time strategy games. In our framework, when a plan is retrieved, a plan dependency graph is inferred to capture the relations between actions in the plan suggested by that case. The case is then adapted in real-time using its plan dependency graph. This allows the system to create and adapt plans in an efficient and effective manner while performing the task.

Our techniques have been implemented in the Darmok system, designed to play WARGUS, a well-known real-time strategy game. We analyze our approach and prove that the complexity of the plan adaptation stage is polynomial in the size of the plan. We also provide bounds on the final size of the adapted plan under certain assumptions.

Read the paper:

Real-Time Plan Adaptation for Case-Based Planning in Real-Time Strategy Games

by Neha Sugandh, Santi Ontañón, Ashwin Ram

9th European Conference on Case-Based Reasoning (ECCBR-08), Trier, Germany, September 2008
www.cc.gatech.edu/faculty/ashwin/papers/er-08-06.pdf