Run-Time Behavior Adaptation for Real-Time Interactive Games

Intelligent agents working in real-time domains need to adapt to changing circumstance so that they can improve their performance and avoid their mistakes. AI agents designed for interactive games, however, typically lack this ability. Game agents are traditionally implemented using static, hand-authored behaviors or scripts that are brittle to changing world dynamics and cause a break in player experience when they repeatedly fail. Furthermore, their static nature causes a lot of effort for the game designers as they have to think of all imaginable circumstances that can be encountered by the agent. The problem is exacerbated as state-of-the-art computer games have huge decision spaces, interactive user input, and real-time performance that make the problem of creating AI approaches for these domains harder.

In this paper we address the issue of non-adaptivity of game playing agents in complex real-time domains. The agents carry out run-time adaptation of their behavior sets by monitoring and reasoning about their behavior execution to dynamically carry out revisions on the behaviors. The behavior adaptation approaches has been instantiated in two real-time interactive game domains. The evaluation results shows that the agents in the two domains successfully adapt themselves by revising their behavior sets appropriately.

Read the paper:

Run-Time Behavior Adaptation for Real-Time Interactive Games

by Manish Mehta, Ashwin Ram

IEEE Transactions on Computational Intelligence and AI in Games, Vol. 1, No. 3, September 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-09-09.pdf
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: