Posts Tagged ‘rts games’

Learning from Demonstration to be a Good Team Member in a Role Playing Game

We present an approach that uses learning from demonstration in a computer role playing game. We describe a behavior engine that uses case-based reasoning. The behavior engine accepts observation traces of human playing decisions and produces a sequence of actions which can then be carried out by an artificial agent within the gaming environment. Our work focuses on team-based role playing games, where the agents produced by the behavior engine act as team members within a mixed human-agent team. We present the results of a study we conducted, where we assess both the quantitative and qualitative performance difference between human-only teams compared with hybrid human-agent teams.

Learning from Demonstration to be a Good Team Member in a Role Playing Game

by Michael Silva, Silas McCroskey, Jonathan Rubin, Michael Youngblood, Ashwin Ram

26th International FLAIRS Conference on Artificial Intelligence (FLAIRS-13).
www.cc.gatech.edu/faculty/ashwin/papers/er-13-01.pdf

Case-Based Reasoning and User-Generated AI for Real-Time Strategy Games

Creating AI for complex computer games requires a great deal of technical knowledge as well as engineering effort on the part of game developers. This paper focuses on techniques that enable end-users to create AI for games without requiring technical knowledge by using case-based reasoning techniques.

AI creation for computer games typically involves two steps: a) generating a first version of the AI, and b) debugging and adapting it via experimentation. We will use the domain of real-time strategy games to illustrate how case-based reasoning can address both steps.

Read the paper:

Case-Based Reasoning and User-Generated AI for Real-Time Strategy Games

by Santi Ontañón and Ashwin Ram

In P. Gonzáles-Calero & M. Gomez-Martín (ed.), AI for Games: State of the Practice, 2011.
www.cc.gatech.edu/faculty/ashwin/papers/er-11-02.pdf

MMPM: A Generic Platform for Case-Based Planning Research

Computer games are excellent domains for research and evaluation of AI and CBR techniques. The main drawback is the effort needed to connect AI systems to existing games. This paper presents MMPM, a middleware platform that supports easy connection of AI techniques with games. We will describe the MMPM architecture, and compare with related systems such as TIELT.

Read the paper:

MMPM: A Generic Platform for Case-Based Planning Research

by Pedro Pablo Gómez-Martín, David Llansó, Marco Antonio Gómez-Martín, Santiago Ontañón, Ashwin Ram

ICCBR-2010 Workshop on Case-Based Reasoning for Computer Games
www.cc.gatech.edu/faculty/ashwin/papers/er-10-03.pdf

Real-Time Case-Based Reasoning for Interactive Digital Entertainment

(Click image to view the video – it’s near the bottom of the new page.)

User-generated content is everywhere: photos, videos, news, blogs, art, music, and every other type of digital media on the Social Web. Games are no exception. From strategy games to immersive virtual worlds, game players are increasingly engaged in creating and sharing nearly all aspects of the gaming experience: maps, quests, artifacts, avatars, clothing, even games themselves. Yet, there is one aspect of computer games that is not created and shared by game players: the AI. Building sophisticated personalities, behaviors, and strategies requires expertise in both AI and programming, and remains outside the purview of the end user.

To understand why authoring Game AI is hard, we need to understand how it works. AI can take digital entertainment beyond scripted interactions into the arena of truly interactive systems that are responsive, adaptive, and intelligent. I will discuss examples of AI techniques for character-level AI (in embedded NPCs, for example) and game-level AI (in the drama manager, for example). These types of AI enhance the player experience in different ways. The techniques are complicated and are usually implemented by expert game designers.

I propose an alternative approach to designing Game AI: Real-Time CBR. This approach extends CBR to real-time systems that operate asynchronously during game play, planning, adapting, and learning in an online manner. Originally developed for robotic control, Real-Time CBR can be used for interactive games ranging from multiplayer strategy games to interactive believable avatars in virtual worlds.

As with any CBR technique, Real-Time CBR integrates problem solving with learning. This property can be used to address the authoring problem. I will show the first Web 2.0 application that allows average users to create AIs and challenge their friends to play them—without programming. I conclude with some thoughts about the role of CBR in AI-based Interactive Digital Entertainment.

Keynote talk at the Eighteenth Conference on Pattern Recognition and Artificial Intelligence (RFIA-12), Lyon, France, February 5, 2012.
Slides and video here: rfia2012.liris.cnrs.fr/doku.php?id=pub:ram
 
Keynote talk at the Eleventh Scandinavian Conference on Artificial Intelligence (SCAI-11), Trondheim, Norway, May 25, 2011.
 
Keynote talk at the 2010 International Conference on Case-Based Reasoning (ICCBR-10), Alessandria, Italy, July 22, 2010.
 
GVU Brown Bag talk, October 14, 2010. Watch the talk here: www.gvu.gatech.edu/node/4320 
 
Try it yourself:
Learn more about the algorithms:
View the talk:
www.sais.se/blog/?p=57

View the slides:

Meta-Level Behavior Adaptation in Real-Time Strategy Games

AI agents designed for real-time settings need to adapt themselves to changing circumstances to improve their performance and remedy their faults. Agents typically designed for computer games, however, lack this ability. The lack of adaptivity causes a break in player experience when they repeatedly fail to behave properly in circumstances unforeseen by the game designers.

We present an AI technique for game-playing agents that helps them adapt to changing game circumstances. The agents carry out runtime adaptation of their behavior sets by monitoring and reasoning about their behavior execution and using this reasoning to dynamically revise their behaviors. The evaluation of the behavior adaptation approach in a complex real-time strategy game shows that the agents adapt themselves and improve their performance by revising their behavior sets appropriately.

Read the paper:

Meta-Level Behavior Adaptation in Real-Time Strategy Games

by Manish Mehta, Santi Ontañon, Ashwin Ram

ICCBR-10 Workshop on Case-Based Reasoning for Computer Games, Alessandria, Italy, 2010.
www.cc.gatech.edu/faculty/ashwin/papers/er-10-02.pdf

User-Generated AI for Interactive Digital Entertainment

CMU Seminar

User-generated content is everywhere: photos, videos, news, blogs, art, music, and every other type of digital media on the Social Web. Games are no exception. From strategy games to immersive virtual worlds, game players are increasingly engaged in creating and sharing nearly all aspects of the gaming experience: maps, quests, artifacts, avatars, clothing, even games themselves. Yet, there is one aspect of computer games that is not created and shared by game players: the AI. Building sophisticated personalities, behaviors, and strategies requires expertise in both AI and programming, and remains outside the purview of the end user.

To understand why Game AI is hard, we need to understand how it works. AI can take digital entertainment beyond scripted interactions into the arena of truly interactive systems that are responsive, adaptive, and intelligent. I discuss examples of AI techniques for character-level AI (in embedded NPCs, for example) and game-level AI (in the drama manager, for example). These types of AI enhance the player experience in different ways. The techniques are complicated and are usually implemented by expert game designers.

I argue that User-Generated AI is the next big frontier in the rapidly growing Social Gaming area. From Sims to Risk to World of Warcraft, end users want to create, modify, and share not only the appearance but the “minds” of their characters. I present my recent research on intelligent technologies to assist Game AI authors, and show the first Web 2.0 application that allows average users to create AIs and challenge their friends to play them—without programming. I conclude with some thoughts about the future of AI-based Interactive Digital Entertainment.

CMU Robotics & Intelligence Seminar, September 28, 2009
Carnegie-Mellon University, Pittsburgh, PA.
MIT Media Lab Colloquium, January 25, 2010
Massachusetts Institute of Technology, Cambridge, MA.
Stanford Media X Philips Seminar, February 1, 2010
Stanford University, Stanford, CA.
Pixar Research Seminar, February 2, 2010

Try it yourself:
Learn more about the algorithms:
View the talk:
www.sais.se/blog/?p=57

View the slides:

Using Meta-Reasoning to Improve the Performance of Case-Based Planning

Case-based planning (CBP) systems are based on the idea of reusing past successful plans for solving new problems. Previous research has shown the ability of meta-reasoning approaches to improve the performance of CBP systems. In this paper we present a new meta-reasoning approach for autonomously improving the performance of CBP systems that operate in real-time domains.

Our approach uses failure patterns to detect anomalous behaviors, and it can learn from experience which of the failures detected are important enough to be fixed. Finally, our meta-reasoning approach can exploit both successful and failed executions for meta-reasoning.

We illustrate its benefits with experimental results from a system implementing our approach called Meta-Darmok in a real-time strategy game. The evaluation of Meta-Darmok shows that the system successfully adapts itself and its performance improves through appropriate revision of the case base.

Read the paper:

Using Meta-Reasoning to Improve the Performance of Case-Based Planning

by Manish Mehta, Santi Ontañón, Ashwin Ram

International Conference on Case-Based Reasoning (ICCBR-09), Seattle, July 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-09-06.pdf

Authoring Behaviors for Games using Learning from Demonstration

Behavior authoring for computer games involves writing behaviors in a programming language. This method is cumbersome and requires a lot of programming effort to author the behavior sets. Further, this approach restricts the behavior set authoring to people who are experts in programming.

This paper describes our approach to design a system that allows a user to demonstrate behaviors to the system, which the system uses to learn behavior sets for a game domain. With learning from demonstration, we aim at removing the requirement that the user has to be an expert in programming, and only require him to be an expert in the game. The approach has been integrated in a easy-to-use visual interface and instantiated for two domains, a real-time strategy game and an interactive drama.

Read the paper:

Authoring Behaviors for Games using Learning from Demonstration

by Manish Mehta, Santiago Ontañón, Tom Amundsen, Ashwin Ram

ICCBR-09 Workshop on Case-Based Reasoning for Computer Games, Seattle, July 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-09-07.pdf

Learning from Human Demonstrations for Real-Time Case-Based Planning

One of the main bottlenecks in deploying case-based planning systems is authoring the case-base of plans. In this paper we present a collection of algorithms that can be used to automatically learn plans from human demonstrations. Our algorithms are based on the basic idea of a plan dependency graph, which is a graph that captures the dependencies among actions in a plan. Such algorithms are implemented in a system called Darmok 2 (D2), a case-based planning system capable of general game playing with a focus on real-time strategy (RTS) games. We evaluate D2 with a collection of three different games with promising results.

Read the paper:

Learning from Human Demonstrations for Real-Time Case-Based Planning

by Santi Ontañón, Kane Bonnette, Praful Mahindrakar, Marco Gómez-Martin, Katie Long, Jai Radhakrishnan, Rushabh Shah, Ashwin Ram

IJCAI-09 Workshop on Learning Structural Knowledge from Observations, Pasadena, CA, July 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-09-04.pdf

Using First Order Inductive Learning as an Alternative to a Simulator in a Game Artificial Intelligence

Currently many game artificial intelligences attempt to determine their next moves by using a simulator to predict the effect of actions in the world. However, writing such a simulator is time-consuming, and the simulator must be changed substantially whenever a detail in the game design is modified. As such, this research project set out to determine if a version of the first order inductive learning algorithm could be used to learn rules that could then be used in place of a simulator.

We used an existing game artificial intelligence system called Darmok 2. By eliminating the need to write a simulator for each game by hand, the entire Darmok 2 project could more easily adapt to additional real-time strategy games. Over time, Darmok 2 would also be able to provide better competition for human players by training the artificial intelligences to play against the style of a specific player. Most importantly, Darmok 2 might also be able to create a general solution for creating game artificial intelligences, which could save game development companies a substantial amount of money, time, and effort.

Read the thesis:

Using First Order Inductive Learning as an Alternative to a Simulator in a Game Artificial Intelligence

by Katie Long

Undergraduate Thesis, College of Computing, Georgia Institute of Technology, Atlanta, GA, 2009
www.cs.utexas.edu/users/katie/UgradThesis.pdf