Posts Tagged ‘games’

Real-Time Plan Adaptation for Case-Based Planning in Real-Time Strategy Games

Case-based planning (CBP) is based on reusing past successful plans for solving new problems. CBP is particularly useful in environments where the large amount of time required to traverse extensive search spaces makes traditional planning techniques unsuitable. In particular, in real-time domains, past plans need to be retrieved and adapted in real time and efficient plan adaptation techniques are required.

We have developed real-time adaptation techniques for case-based planning and specifically applied them to the domain of real-time strategy games. In our framework, when a plan is retrieved, a plan dependency graph is inferred to capture the relations between actions in the plan suggested by that case. The case is then adapted in real-time using its plan dependency graph. This allows the system to create and adapt plans in an efficient and effective manner while performing the task.

Our techniques have been implemented in the Darmok system, designed to play WARGUS, a well-known real-time strategy game. We analyze our approach and prove that the complexity of the plan adaptation stage is polynomial in the size of the plan. We also provide bounds on the final size of the adapted plan under certain assumptions.

Read the paper:

Real-Time Plan Adaptation for Case-Based Planning in Real-Time Strategy Games

by Neha Sugandh, Santi Ontañón, Ashwin Ram

9th European Conference on Case-Based Reasoning (ECCBR-08), Trier, Germany, September 2008
www.cc.gatech.edu/faculty/ashwin/papers/er-08-06.pdf

Situation Assessment for Plan Retrieval in Real-Time Strategy Games

Case-Based Planning (CBP) is an effective technique for solving planning problems that has the potential to reduce the computational complexity of the generative planning approaches. However, the success of plan execution using CBP depends highly on the selection of a correct plan; especially when the case-base of plans is extensive.

In this paper we introduce the concept of a situation and explain a situation assessment algorithm which improves plan retrieval for CBP. We have applied situation assessment to our previous CBP system, Darmok, in the domain of real-time strategy games. During Darmok’s execution using situation assessment, the high-level representation of the game state i.e. situation is predicted using a decision tree based Situation-Classification model. Situation predicted is further used for the selection of relevant knowledge intensive features, which are derived from the basic representation of the game state, to compute the similarity of cases with the current problem. The feature selection performed here is knowledge-based and improves the performance of similarity measurements during plan retrieval. The instantiation of the situation assessment algorithm to Darmok gave us promising results for plan retrieval within the real-time constraints.

Read the paper:

Situation Assessment for Plan Retrieval in Real-Time Strategy Games

by Kinshuk Mishra, Santi Ontañón, Ashwin Ram

9th European Conference on Case-Based Reasoning (ECCBR-08), Trier, Germany, September 2008
www.cc.gatech.edu/faculty/ashwin/papers/er-08-07.pdf

On-Line Case-Based Plan Adaptation for Real-Time Strategy Games

Traditional artificial intelligence techniques do not perform well in applications such as real-time strategy games because of the extensive search spaces which need to be explored. In addition, this exploration must be carried out on-line during performance time; it cannot be precomputed. We have developed on-line case-based planning techniques that are effective in such domains. In this paper, we extend our earlier work using ideas from traditional planning to inform the real-time adaptation of plans. In our framework, when a plan is retrieved, a plan dependency graph is inferred to capture the relations between actions in the plan. The plan is then adapted in real-time using its plan dependency graph. This allows the system to create and adapt plans in an efficient and effective manner while performing the task. The approach is evaluated using WARGUS, a well-known real-time strategy game.

Read the paper:

On-Line Case-Based Plan Adaptation for Real-Time Strategy Games

by Neha Sugandh, Santi Ontañón, Ashwin Ram

23rd AAAI Conference on Artificial Intelligence (AAAI-08), Chicago, IL, July 2008
www.cc.gatech.edu/faculty/ashwin/papers/er-08-04.pdf

Case-Based Reasoning for Game AI

Computer games are an increasingly popular application for Artificial Intelligence (AI) research, and conversely AI is an increasingly popular selling point for commercial games. Although games are typically associated with entertainment applications, there are many “serious” applications of gaming, including military, corporate, and advertising applications. There are also what the so called “humane” gaming applications—interactive tools for medical training, educational games, and games that reflect social consciousness or advocate for a cause. Game AI is the effort of taking computer games beyond scripted interactions, however complex, into the arena of truly interactive systems that are responsive, adaptive, and intelligent. Such systems learn about the player(s) during game play, adapt their own behaviors beyond the pre-programmed set provided by the game author, and interactively develop and provide a richer experience to the player(s).

In this talk, I discuss a range of CBR approaches for Game AI. I discuss differences and similarities between character-level AI (in embedded NPCs, for example) and game-level AI (in the drama manager or game director, for example). I explain why the AI must reason at multiple levels, including reactive, tactical, strategic, rhetorical, and meta, and propose a CBR architecture that lets us design and coordinate real-time AIs operating asynchronously at all these levels. I conclude with a brief discussion on the very idea of Game AI: is it feasible? realistic? and would we call it “intelligence” if we could implement all this stuff?

View the talk:

Google Tech Talk: Case-Based Reasoning for Game AI

by Ashwin Ram

Google Tech Talk, Mountain View, CA, April 2008
www.youtube.com/watch?v=s9G7DRTuB5s

Adaptive Computer Games: Easing the Authorial Burden

Game designers usually create AI behaviors by writing scripts that describe the reactions to all imaginable circumstances within the confines of the game world. The AI Programming Wisdom series provides a good overview of current scripting techniques used in the game industry. Scripting is expensive and it’s hard to plan. So, behaviors could be repetitive (resulting in breaking the atmosphere) or behaviors could fail to achieve their desired purpose. On one hand, creating AI with a rich behavior set requires a great deal of engineering effort on the part of game developers. On the other hand, the rich and dynamic nature of game worlds makes it hard to imagine and plan for all possible scenarios. When behaviors fail to achieve their desired purpose, the game AI is unable to identify such failure and will continue executing them. The techniques described in this article specifically deal with these issues.

Behavior (or script) creation for computer games typically involves two steps: a) generating a first version of behaviors using a programming language, b) debugging and adapting the behavior via experimentation. In this article we present techniques that aim at assisting the author from carrying out these two steps manually: behavior learning and behavior adaptation.

In the behavior learning process, the game developers can specify the AI behavior by demonstrating it to the system instead of having to code the behavior using a programming language. The system extracts behaviors from these expert demonstrations and stores them. Then, at performance time, the system retrieves appropriate behaviors observed from the expert and revises them in response to the current situation it is dealing with (i.e., to the current game state).

In the behavior adaptation process, the system monitors the performance of these learned behaviors at runtime. The system keeps track of the status of the executing behaviors, infer from their execution trace what might be wrong, and perform appropriate adaptations to the behaviors once the game is over. This approach to behavior transformation enables the game AI to reflect on the issues in the learnt behaviors from expert demonstration and revises them after post analysis of things that went wrong during the game. These set of techniques allow non-AI experts to define behaviors through demonstration that can then be adapted to different situations thereby reducing the development effort required to address all contingencies in a complex game.

Read the paper:

Adaptive Computer Games: Easing the Authorial Burden

by Manish Mehta, Santi Ontañón, Ashwin Ram

AI Game Programming Wisdom 4 (AIGPW4), Steve Rabin (editor), Charles River Media, 2008
www.cc.gatech.edu/faculty/ashwin/papers/er-08-03.pdf

Driving Interactive Drama Research through Building Complete Systems

Interactive drama presents one of the most challenging applications of autonomous characters, requiring characters to simultaneously engage in moment-by-moment personality-rich physical behavior, exhibit conversational competencies, and participate in a dynamically developing story arc. One way to advance the field and continue to make exciting progress is to develop building blocks needed for creating these interactive experiences that are situated in a complete system. Our research goals presented in this paper are driven by this perspective of developing a complete interactive drama architecture. Specifically, we discuss the different research challenges that we are interested in pursuing at the different building blocks required to build a complete interactive drama. We also discuss the interactive drama domain we are developing and present our initial steps in handling the research challenges.

Read the paper:

Driving Interactive Drama Research through Building Complete Systems

by Manish Mehta, Santi Ontañón, Ashwin Ram

AAAI-07 Spring Symposium on Intelligent Narrative Technologies, Arlington, VA, November 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-07-14.pdf

Drama Management Evaluation for Interactive Fiction Games

A growing research community is working towards employing drama management components in interactive story-based games. These components gently guide the story towards a narrative arc that improves the player’s experience. However, the success of drama management approaches has not been evaluated using human players in a real game implementation. In this paper, we evaluate our drama management approach deployed in our own implementation of an interactive fiction game Anchorhead. Our approach uses player feedback as a basis for guiding the personalization of the interaction. The results indicate that our Drama Manager (DM) aids in providing a better overall experience for the players while guiding them through their interaction. Based on this work, we suggest that the strategies employed by the DM should take into account the player’s previous playing experience with the current game as well as his general game-playing experience.

Read the paper:

Drama Management Evaluation for Interactive Fiction Games

by Manu Sharma, Santi Ontañón, Manish Mehta, Ashwin Ram

AAAI-07 Spring Symposium on Intelligent Narrative Technologies, Arlington, VA, November 2007
www.cc.gatech.edu/faculty/ashwin/papers/er-07-15.pdf

Case-Based Planning and Execution for Real-Time Strategy Games

Artificial Intelligence techniques have been successfully applied to several computer games. However in some kinds of computer games, like real-time strategy (RTS) games, traditional artificial intelligence techniques fail to play at a human level because of the vast search spaces that they entail. In this paper we present a real-time case based planning and execution approach designed to deal with RTS games. We propose to extract behavioral knowledge from expert demonstrations in form of individual cases. This knowledge can be reused via a case based behavior generator that proposes behaviors to achieve the specific open goals in the current plan. Specifically, we applied our technique to the WARGUS domain with promising results.

Read the paper:

Case-Based Planning and Execution for Real-Time Strategy Games

by Santi Ontañón, Kinshuk Mishra, Neha Sugandh, Ashwin Ram

Seventh International Conference on Case-Based Reasoning (ICCBR-07), Belfast, Northern Ireland, August 2007
www.cc.gatech.edu/faculty/ashwin/papers/er-07-11.pdf

Emotionally Driven Natural Language Generation for Personality Rich Characters in Interactive Games

Natural Language Generation for personality rich characters represents one of the important directions for believable agents research. The typical approach to interactive NLG is to hand-author textual responses to different situations. In this paper we address NLG for interactive games. Specifically, we present a novel template-based system that provides two distinct advantages over existing systems. First, our system not only works for dialogue, but enables a character’s personality and emotional state to influence the feel of the utterance. Second, our templates are resuable across characters, thus decreasing the burden on the game author. We briefly describe our system and present results of a preliminary evaluation study.

Read the paper:

Emotionally Driven Natural Language Generation for Personality Rich Characters in Interactive Games

by Christina Strong, Kinshuk Mishra, Manish Mehta, Alistair Jones, Ashwin Ram

Third Conference on Artificial Intelligence for Interactive Digital Entertainment (AIIDE-07), Stanford, CA, June 2007
www.cc.gatech.edu/faculty/ashwin/papers/er-07-09.pdf

Evaluating Player Modeling for a Drama Manager Based Interactive Fiction

A growing research community is working towards employing drama management components in story-based games that guide the story towards specific narrative arcs depending on a particular player’s playing patterns. Intuitively, player modeling should be a key component for Drama Manager (DM) based approaches to succeed with human players.

In this paper, we report a particular implementation of the DM component connected to an interactive story game, Anchorhead, while specifically focusing on the player modeling component. We analyze results from our evaluation study and show that similarity in the trace of DM decisions in previous games can be used to predict interestingness of game events for the current player. Results from our current analysis indicate that the average time spent in performing player actions provides a strong distinction between players with varying degrees of gaming experience, thereby helping the DM to adapt its strategy based on this information.

Read the paper:

Evaluating Player Modeling for a Drama Manager Based Interactive Fiction

by Manu Sharma, Manish Mehta, Santi Ontañón, Ashwin Ram

Third Conference on Artificial Intelligence for Interactive Digital Entertainment (AIIDE-07), Workshop on Player Satisfaction, Stanford, CA, June 2007
www.cc.gatech.edu/faculty/ashwin/papers/er-07-08.pdf