Interacting Learning-Goals: Treating Learning as a Planning Task

This research examines the metaphor of goal-driven planning as a tool for performing the integration of multiple learning algorithms. In case-based reasoning systems, several learning techniques may apply to a given situation. In a failure-driven learning environment, the problems of strategy construction are to choose and order the best set of learning algorithms or strategies that recover from a processing failure and to use those strategies to modify the system’s background knowledge so that the failure will not be repeated in similar future situations.

A solution to this problem is to treat learning-strategy construction as a planning problem with its own set of goals. Learning goals, as opposed to ordinary goals, specify desired states in the background knowledge of the learner, rather than desired states in the external environment of the planner. But as with traditional goal-based planners, management and pursuit of these learning goals becomes a central issue in learning. Example interactions of learning-goals are presented from a multistrategy learning system called Meta-AQUA that combines a case-based approach to learning with non linear planning to achieve goals in a knowledge space.

Read the paper:

Interacting Learning-Goals: Treating Learning as a Planning Task

by Mike Cox, Ashwin Ram

In J.-P. Haton, M. Keane, & M. Manago (editors), Advances in Case-Based Reasoning (Lecture Notes in Artificial Intelligence), 60-74, Springer-Verlag, 1995. Earlier version presented at the Second European Workshop on Case-Based Reasoning (EWCBR-94), Chantilly, France, 1994.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: