Archive for August, 1994

Failure-Driven Learning as Input Bias

Self-selection of input examples on the basis of performance failure is a powerful bias for learning systems. The definition of what constitutes a learning bias, however, has been typically restricted to bias provided by the input language, hypothesis language, and preference criteria between competing concept hypotheses. But if bias is taken in the broader context as any basis that provides a preference for one concept change over another, then the paradigm of failure-driven processing indeed provides a bias. Bias is exhibited by the selection of examples from an input stream that are examples of failure; successful performance is filtered out. We show that the degrees of freedom are less in failure-driven learning than in success-driven learning and that learning is facilitated because of this constraint. We also broaden the definition of failure, provide a novel taxonomy of failure causes, and illustrate the interaction of both in a multistrategy learning system called Meta-AQUA.

Read the paper:

Failure-Driven Learning as Input Bias

by Mike Cox, Ashwin Ram

Sixteenth Annual Conference of the Cognitive Science Society, Atlanta, GA, August 1994
www.cc.gatech.edu/faculty/ashwin/papers/er-94-09.pdf

Integrating Creativity and Reading: A Functional Approach

Reading has been studied for decades by a variety of cognitive disciplines, yet no theories exist which sufficiently describe and explain how people accomplish the complete task of reading real-world texts. In particular, a type of knowledge intensive reading known as creative reading has been largely ignored by the past research. We argue that creative reading is an aspect of practically all reading experiences; as a result, any theory which overlooks this will be insufficient.

We have built on results from psychology, artificial intelligence, and education in order to produce a functional theory of the complete reading process. The overall framework describes the set of tasks necessary for reading to be performed. Within this framework, we have developed a theory of creative reading. The theory is implemented in the ISAAC (Integrated Story Analysis And Creativity) system, a reading system which reads science fiction stories.

Read the paper:

Integrating Creativity and Reading: A Functional Approach

by Kenneth Moorman, Ashwin Ram

Sixteenth Annual Conference of the Cognitive Science Society (CogSci-94), Atlanta, GA, August 1994
www.cc.gatech.edu/faculty/ashwin/papers/er-94-10.pdf

A Model of Creative Understanding

Although creativity has largely been studied in problem solving contexts, creativity consists of both a generative component and a comprehension component. In particular, creativity is an essential part of reading and understanding of natural language stories. We have formalized the understanding process and have developed an algorithm capable of producing creative understanding behavior. We have also created a novel knowledge organization scheme to assist the process. Our model of creativity is implemented as a portion of the ISAAC (Integrated Story Analysis And Creativity) reading system, a system which models the creative reading of science fiction stories.

Read the paper:

A Model of Creative Understanding

by Kenneth Moorman, Ashwin Ram

Twelvth National Conference on Artificial Intelligence (AAAI-94), Seattle, WA, August 1994
www.cc.gatech.edu/faculty/ashwin/papers/er-94-04.pdf