Archive for August 19th, 2011

Construction and Adaptation of AI Behaviors in Computer Games

Computer games are an increasingly popular application for Artificial Intelligence (AI) research, and conversely AI is an increasingly popular selling point for commercial digital games. AI for non playing characters (NPC) in computer games tends to come from people with computing skills well beyond the average user. The prime reason behind the lack of involvement of novice users in creating AI behaviors for NPC’s in computer games is that construction of high quality AI behaviors is a hard problem.

There are two reasons for it. First, creating a set of AI behavior requires specialized skills in design and programming. The nature of the process restricts it to certain individuals who have a certain expertise in this area. There is little understanding of how the behavior authoring process can be simplified with easy-to-use authoring environments so that novice users (without programming and design experience) can carry out the behavior authoring task. Second, the constructed AI behaviors have problems and bugs in them which cause a break in player expe- rience when the problematic behaviors repeatedly fail. It is harder for novice users to identify, modify and correct problems with the authored behavior sets as they do not have the necessary debugging and design experience.

The two issues give rise to a couple of interesting questions that need to be investigated: a) How can the AI behavior construction process be simplified so that a novice user (without program- ming and design experience) can easily conduct the authoring activity and b) How can the novice users be supported to help them identify and correct problems with the authored behavior sets? In this thesis, I explore the issues related to the problems highlighted and propose a solution to them within an application domain, named Second Mind(SM). In SM novice users who do not have expertise in computer programming employ an authoring interface to design behaviors for intelligent virtual characters performing a service in a virtual world. These services range from shopkeepers to museum hosts. The constructed behaviors are further repaired using an AI based approach.

To evaluate the construction and repair approach, we conduct experiments with human subjects. Based on developing and evaluating the solution, I claim that a design solution with behavior timeline based interaction design approach for behavior construction supported by an understandable vocabulary and reduced feature representation formalism enables novice users to author AI behaviors in an easy and understandable manner for NPCs performing a service in a virtual world. I further claim that an introspective reasoning approach based on comparison of successful and unsuccessful execution traces can be used as a means to successfully identify breaks in player experience and modify the failures to improve the experience of the player interacting with NPCs performing a service in a virtual world.

The work contributes in the following three ways by providing: 1) a novel introspective reasoning approach for successfully detecting and repairing failures in AI behaviors for NPCs performing a service in a virtual world.; 2) a novice user understandable authoring environment to help them create AI behaviors for NPCs performing a service in a virtual world in an easy and understandable manner; and 3) Design, debugging and testing scaffolding to help novice users modify their authored AI behaviors and achieve higher quality modified AI behaviors compared to their original unmodified behaviors.

Read the dissertation:

Construction and Adaptation of AI Behaviors in Computer Games

by Manish Mehta

PhD dissertation, College of Computing, Georgia Institute of Technology, August 2011.