Archive for July 16th, 2009

An Ensemble Learning and Problem Solving Architecture for Airspace Management

In this paper we describe the application of a novel learning and problem solving architecture to the domain of airspace management, where multiple requests for the use of airspace need to be reconciled and managed automatically. The key feature of our “Generalized Integrated Learning Architecture” (GILA) is a set of integrated learning and reasoning (ILR) systems coordinated by a central meta-reasoning executive (MRE). Each ILR learns independently from the same training example and contributes to problem-solving in concert with other ILRs as directed by the MRE. Formal evaluations show that our system performs as well as or better than humans after learning from the same training data. Further, GILA outperforms any individual ILR run in isolation, thus demonstrating the power of the ensemble architecture for learning and problem solving.

Read the paper:

An Ensemble Learning and Problem Solving Architecture for Airspace Management

by XS Zhang et al.

International Conference on Innovative Applications of Artificial Intelligence (IAAI-09), Pasadena, CA, July 2009