Efficient Feature Selection in Conceptual Clustering

Feature selection has proven to be a valuable technique in supervised learning for improving predictive accuracy while reducing the number of attributes considered in a task. We investigate the potential for similar benefits in an unsupervised learning task, conceptual clustering. The issues raised in feature selection by the absence of class labels are discussed and an implementation of a sequential feature selection algorithm based on an existing conceptual clustering system is described. Additionally, we present a second implementation which employs a technique for improving the efficiency of the search for an optimal description and compare the performance of both algorithms.

Read the paper:

Efficient Feature Selection in Conceptual Clustering

by Mark Devaney, Ashwin Ram

14th  International Conference on Machine Learning (ICML-97), Nashville, TN, July 1997
www.cc.gatech.edu/faculty/ashwin/papers/er-97-01.pdf

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: