This paper describes a methodology for aiding the learning of troubleshooting tasks in the course of an engineer’s work. The approach supports learning in the context of actual, on-the-job troubleshooting and, in addition, supports performance of the troubleshooting task in tandem. This approach has been implemented in a computer tool called WALTS (Workspace for Aiding and Learning Troubleshooting).
This method aids learning by helping the learner structure his or her task into the conceptual components necessary for troubleshooting, giving advice about how to proceed, suggesting candidate hypotheses and solutions, and automatically retrieving cognitively relevant media. WALTS includes three major components: a structured dynamic workspace for representing knowledge about the troubleshooting process and the device being diagnosed; an intelligent agent that facilitates the troubleshooting process by offering advice; and an intelligent media retrieval tool that automatically presents candidate hypotheses and solutions, relevant cases, and various other media. WALTS creates resources for future learning and aiding of troubleshooting by storing completed troubleshooting instances in a self-populating database of troubleshooting cases.
The methodology described in this paper is partly based on research in problem-based learning, learning by doing, case-based reasoning, intelligent tutoring systems, and the transition from novice to expert. The tool is currently implemented in the domain of remote computer troubleshooting.
Read the paper:
Structuring On-The-Job Troubleshooting Performance to Aid Learning
by Brian Minsk, Hari Balakrishnan, Ashwin Ram
World Conference on Engineering Education, Minneapolis, MN, October 1995www.cc.gatech.edu/faculty/ashwin/papers/er-95-06.pdf