Learning to Troubleshoot: Multistrategy Learning of Diagnostic Knowledge for a Real-World Problem Solving Task

This article presents a computational model of the learning of diagnostic knowledge based on observations of human operators engaged in a real-world troubleshooting task. We present a model of problem solving and learning in which the reasoner introspects about its own performance on the problem solving task, identifies what it needs to learn to improve its performance, formulates learning goals to acquire the required knowledge, and pursues its learning goals using multiple learning strategies. The model is implemented in a computer system which provides a case study based on observations of troubleshooting operators and protocol analysis of the data gathered in the test area of an operational electronics manufacturing plant. The model is intended as a computational model of human learning; in addition, it is computationally justified as a uniform, extensible framework for multistrategy learning.

Read the paper:

Learning to Troubleshoot: Multistrategy Learning of Diagnostic Knowledge for a Real-World Problem Solving Task

by Ashwin Ram, S Narayanan, Mike Cox

Cognitive Science journal, 19(3):289-340, 1995
www.cc.gatech.edu/faculty/ashwin/papers/git-cc-93-67.pdf
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: