Evaluation of Explanatory Hypotheses

Abduction is often viewed as inference to the “best” explanation. However, the evaluation of the goodness of candidate hypotheses remains an open problem. Most artificial intelligence research addressing this problem has concentrated on syntactic criteria, applied uniformly regardless of the explainer’s intended use for the explanation. We demonstrate that syntactic approaches are insufficient to capture important differences in explanations, and propose instead that choice of the “best” explanation should be based on explanations’ utility for the explainer’s purpose. We describe two classes of goals motivating explanation: knowledge goals reflecting internal desires for information, and goals to accomplish tasks in the external world. We describe how these goals impose requirements on explanations, and discuss how we apply those requirements to evaluate hypotheses in two computer story understanding systems.

Read the paper:

Evaluation of Explanatory Hypotheses

by Ashwin Ram, David Leake

13th Annual Conference of the Cognitive Science Society, 867-871, Chicago, IL, August 1991

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: