Posts Tagged ‘case-based reasoning’

IRIA: The Information Research Intelligent Assistant

The explosion of information in the modern environment demands the ability to collect, organize, manage, and search large amounts of information across a wide variety of real-world applications. The primary tools available for such tasks are large-scale database systems and keyword-based document search techniques. However, such tools are rapidly proving inadequate: traditional database systems do not enable ready access to relevant knowledge, prompting a market of add-ons and existing search techniques are insufficiently precise or selective to support such tasks, leading to consumer exasperation. In the end users are left unsatisfied, confronted with a sea of unorganized and unhelpful data. A new approach is needed.

The Information Research Intelligent Assistant (IRIA) is an integrated information retrieval architecture that addresses this problem. IRIA enables a user or workgroup to build a personalized map of the relevant information available in a database, intranet, or internet, and the ability to find, add, and use information quickly and easily. An IRIA-based intelligent information management system acts as an autonomous assistant to a user working on a task, working unobtrusively in the background to learn both the user’s interests and the resources available to satisfy those interests. This approach enables “reminding engines” which monitor a user’s work to proactively find and recommend useful information as well as “workgroup memories” which learn from a user’s behavior to build a comprehensive knowledge map of a particular area of interest.

In empirical tests, IRIA has demonstrated the ability to monitor a user’s progress on a task (specifically, web search) and proactively find and recommend information relevant to that task based on the context and history of the user’s interactions with the system. IRIA further demonstrated that it could provide collaborative facilities to the workgroup and that it could learn and improve its knowledge map over time.

Read the paper:

IRIA: The Information Research Intelligent Assistant

by Anthony Francis, Mark Devaney, Ashwin Ram

International Conference on Artificial Intelligence (ICAI-00), Las Vegas, Nevada
www.dresan.com/research/publications/icai-2000.html

Context-Sensitive Asynchronous Memory

Retrieving useful answers from large knowledge bases given under-specified questions is an important problem in the construction of general intelligent agents. The core of this problem is how to get the information an agent needs when it doesn’t know how to ask the right question and doesn’t have the time to exhaustively search all available information.

Context-sensitive asynchronous memory is a model of memory retrieval that solves this problem. The context-sensitive asynchronous memory approach exploits feedback from the task and environment to guide and constrain memory search by interleaving memory retrieval and problem solving. To achieve this behavior, a context-sensitive asynchronous memory uses an asynchronous retrieval system to manage a context- sensitive search process operating over a content-addressable knowledge base. Solutions based on this approach provide useful answers to vague questions efficiently, based on information naturally available during the performance of a task.

The core claims of this approach are:
•  Claim 1: An efficient, domain-independent solution to the problem of retrieving useful answers from large knowledge bases given under-specified queries is to interleave memory retrieval with task performance and use feedback from the task or environment to guide the search of memory.
•  Claim 2: Interleaving memory retrieval with and exploiting feedback from task performance can be achieved in a domain-independent way using a context- sensitive, asynchronous memory retrieval process.
•  Claim 3: A rich, reified, grounded semantic network representation enables context-sensitive memory retrieval processes to retrieve useful information in a domain-independent way for a wide variety of tasks.
•  Claim 4: To effectively use a context-sensitive asynchronous memory to retrieve useful answers, a task must be able to work in parallel with a memory process, communicate with it, provide feedback to it, and must possess integration mechanisms to incorporate asynchronous retrievals provided by the memory.

The context-sensitive asynchronous memory approach is applicable to tasks and domains which exhibit the following criteria: problems are difficult to solve, questions are difficult to formulate, a large knowledge base is available yet contains only a small selection of relevant information, and, most importantly, the environment is regular, in that solutions in the knowledge base occur in patterns and relationships similar to those found in situations in which the solutions are likely to be applicable in the future. This approach is domain independent: it is applicable to a wide variety of tasks and problems from simple search applications to complex cognitive agents.

To exploit context-sensitive asynchronous memory, reasoners need certain properties. Experience-based agency is an agent architecture which provides an outline of how to construct complete intelligent agents which use a context-sensitive asynchronous memory to support a reasoning system performing a real task. The experience-based agent architecture combines a context-sensitive asynchronous memory retrieval process with a global store of experience used by all agent processes, a global working memory to provide a uniform way to collect feedback, and a global task controller which orchestrates reasoning and memory. The experience-based agent architecture also provides principles for constructing integration mechanisms that enable reasoning tasks to work with the context-sensitive asynchronous memory.

Furthermore, to help determine when these approaches should be used, this research also contributes theoretical analyses that predict the classes of tasks and situations in which the context-sensitive asynchronous memory and experience-based agent approaches will provide the greatest benefit.

To evaluate the approach, the experience-based agent architecture has been implemented in the Nicole system. Nicole is a large Common Lisp program providing global long-term and working memory stores represented as a rich, reified, grounded semantic network, a context-sensitive asynchronous memory process based on a novel model of context-directed spreading activation, a control system for orchestrating reasoning and memory, and a task language to implement reasoning tasks. Nicole enables the context-sensitive asynchronous memory approach to be applied to real problems, including information retrieval in Nicole-IRIA, a information management application that uses context to recommend useful information (Francis et al. 2000), planning in Nicole-MPA, a case-based least-commitment planner that adapts multiple plans (Ram & Francis 1995) and language understanding in ISAAC (Moorman 1997), a story understanding system which uses Nicole’s retrieval system as part of its creative understanding process. Nicole and her children thus provide a testbed to evaluate the context-sensitive asynchronous memory approach.

Experiments with Nicole support the claims of the approach. Experiments with Nicole-IRIA demonstrate that a context-sensitive asynchronous memory can use feedback from browsing to improve the quality of memory retrieval, while experiments with Nicole-MPA demonstrate how information derived from reasoning can improve the quantity of retrieval. The use of Nicole’s memory in the ISAAC system demonstrates the generality of the context-sensitive asynchronous memory approach. Other experiments with Nicole-MPA demonstrate the importance of representation as a source of power for context-sensitive asynchronous memory, and further demonstrate that the core features of the experience-based agent architecture are crucial sources of power necessary to enable a reasoning task to work with and exploit a context-sensitive asynchronous memory.

In sum, these evaluations demonstrate that the context-sensitive asynchronous memory approach is a general approach to memory retrieval which can provide concrete benefits to real problems.

Read the thesis:

Context-Sensitive Asynchronous Memory

by Anthony Francis

PhD Thesis, College of Computing, Georgia Institute of Technology, Atlanta, GA, 2000
www.cc.gatech.edu/faculty/ashwin/papers/git-cc-00-01.pdf

Experiments with Reinforcement Learning in Problems with Continuous State and Action Spaces

A key element in the solution of reinforcement learning problems is the value function. The purpose of this function is to measure the long-term utility or value of any given state. The function is important because an agent can use this measure to decide what to do next. A common problem in reinforcement learning when applied to systems having continuous states and action spaces is that the value function must operate with a domain consisting of real-valued variables, which means that it should be able to represent the value of infinitely many state and action pairs. For this reason, function approximators are used to represent the value function when a close-form solution of the optimal policy is not available.

In this paper, we extend a previously proposed reinforcement learning algorithm so that it can be used with function approximators that generalize the value of individual experiences across both, state and action spaces. In particular, we discuss the benefits of using sparse coarse-coded function approximators to represent value functions and describe in detail three implementations: CMAC, instance-based, and case-based. Additionally, we discuss how function approximators having different degrees of resolution in different regions of the state and action spaces may influence the performance and learning efficiency of the agent.

We propose a simple and modular technique that can be used to implement function approximators with non-uniform degrees of resolution so that it can represent the value function with higher accuracy in important regions of the state and action spaces. We performed extensive experiments in the double integrator and pendulum swing up systems to demonstrate the proposed ideas.

Read the paper:

Experiments with Reinforcement Learning in Problems with Continuous State and Action Spaces

by Juan Santamaria, Rich Sutton, Ashwin Ram

Adaptive Behavior, 6(2):163-217, 1997
www.cc.gatech.edu/faculty/ashwin/papers/er-98-02.pdf

A New Heuristic Approach for Dual Control

Autonomous agents engaged in a continuous interaction with an incompletely known environment face the problem of dual control (Feldbaum, 1965). Simply stated, actions are necessary not only for studying the environment, but also for making progress on the task. In other words, actions must bear a “dual” character: They must be investigators to some degree, but also directors to some degree. Because the number of variables involved in the solution of the dual control problem increases with the number of decision stages, the exact solution of the dual control problem is computationally intractable except for a few special cases.

This paper provides an overview of dual control theory and proposes a heuristic approach towards obtaining a near-optimal dual control method that can be implemented. The proposed algorithm selects control actions taking into account the information contained in past observations as well as the possible information that future observations may reveal. In short, the algorithm anticipates the fact that future learning is possible and selects the control actions accordingly. The algorithm uses memory-based methods to associate long-term benefit estimates to belief states and actions, and selects the actions to execute next according to such estimates. The algorithm uses the outcome of every experience to progressively refine the long-term benefit estimates so that it can make better, improved decisions as it progresses. The algorithm is tested on a classical simulation problem.

Read the paper:

A New Heuristic Approach for Dual Control

by Juan Carlos Santamaria, Ashwin Ram

AAAI-97 Workshop on On-Line Search, Providence, RI, July 1997
www.cc.gatech.edu/faculty/ashwin/papers/er-97-02.pdf

Can Your Architecture Do This? A Proposal for Impasse-Driven Asynchronous Memory Retrieval and Integration

We propose an impasse-driven method for generating memory retrieval requests and integrating their contents dynamically and asynchronously into the current reasoning context of an agent. This method extends our previous theory of agent architecture, called experience-based agency (Ram & Francis 1996), by proposing a general method that can replace and augment task-specific mechanisms for generating memory retrievals and invoking integration mechanisms. As part of an overall agent architecture, this method has promise as a way to introduce in a principled way efficient high-level memory operations into systems based on reactive task-network decomposition.

Read the paper:

Can Your Architecture Do This? A Proposal for Impasse-Driven Asynchronous Memory Retrieval and Integration

by Anthony Francis, Ashwin Ram

AAAI-97 Workshop on Robots, Softbots, Immobots: Theories of Action, Planning and Control, Providence, RI, July 1997
www.cc.gatech.edu/faculty/ashwin/papers/er-97-03.pdf

Case-Based Planning to Learn

Learning can be viewed as a problem of planning a series of modifications to memory. We adopt this view of learning and propose the applicability of the case-based planning methodology to the task of planning to learn. We argue that relatively simple, fine-grained primitive inferential operators are needed to support flexible planning. We show that it is possible to obtain the benefits of case-based reasoning within a planning to learn framework.

Read the paper:

Case-Based Planning to Learn

by Bill Murdock, Gordon Shippey, Ashwin Ram

2nd International Conference on Case-Based Reasoning (ICCBR-97), Providence, RI, July 1997
www.cc.gatech.edu/faculty/ashwin/papers/er-97-04.pdf

Continuous Case-Based Reasoning

Case-based reasoning systems have traditionally been used to perform high-level reasoning in problem domains that can be adequately described using discrete, symbolic representations. However, many real-world problem domains, such as autonomous robotic navigation, are better characterized using continuous representations. Such problem domains also require continuous performance, such as on-line sensorimotor interaction with the environment, and continuous adaptation and learning during the performance task.

This article introduces a new method for continuous case-based reasoning, and discusses its application to the dynamic selection, modification, and acquisition of robot behaviors in an autonomous navigation system, SINS (Self-Improving Navigation System). The computer program and the underlying method are systematically evaluated through statistical analysis of results from several empirical studies. The article concludes with a general discussion of case-based reasoning issues addressed by this research.

Read the paper:

Continuous Case-Based Reasoning

by Ashwin Ram, Juan Carlos Santamaria

Artificial Intelligence journal, (90)1-2:25-77, 1997
www.cc.gatech.edu/faculty/ashwin/papers/er-97-06.pdf

Case-Based Reactive Navigation: A Case-Based Method for On-Line Selection and Adaptation of Reactive Control Parameters in Autonomous Robotic Systems

This article presents a new line of research investigating on-line learning mechanisms for autonomous intelligent agents. We discuss a case-based method for dynamic selection and modification of behavior assemblages for a navigational system. The case-based reasoning module is designed as an addition to a traditional reactive control system, and provides more flexible performance in novel environments without extensive high-level reasoning that would otherwise slow the system down. The method is implemented in the ACBARR (A Case-BAsed Reactive Robotic) system, and evaluated through empirical simulation of the system on several different environments, including “box canyon” environments known to be problematic for reactive control systems in general.

Read the paper:

Case-Based Reactive Navigation: A Case-Based Method for On-Line Selection and Adaptation of Reactive Control Parameters in Autonomous Robotic Systems

by Ashwin Ram, Ron Arkin, Kenneth Moorman, Russ Clark

IEEE Transactions on Systems, Man, and Cybernetics, 27B(3), 1997. Preliminary version published as Technical Report GIT-CC-92/57, College of Computing, Georgia Institute of Technology, Atlanta, GA, 1992
www.cc.gatech.edu/faculty/ashwin/papers/git-cc-92-57.pdf

Learning Adaptive Reactive Controllers

Reactive controllers has been widely used in mobile robots since they are able to achieve successful performance in real-time. However, the configuration of a reactive controller depends highly on the operating conditions of the robot and the environment; thus, a reactive controller configured for one class of environments may not perform adequately in another. This paper presents a formulation of learning adaptive reactive controllers. Adaptive reactive controllers inherit all the advantages of traditional reactive controllers, but in addition they are able to adjust themselves to the current operating conditions of the robot and the environment in order to improve task performance. Furthermore, learning adaptive reactive controllers can learn when and how to adapt the reactive controller so as to achieve effective performance under different conditions.

The paper presents an algorithm for a learning adaptive reactive controller that combines ideas from case-based reasoning and reinforcement learning to construct a mapping between the operating conditions of a controller and the appropriate controller configuration; this mapping is in turn used to adapt the controller configuration dynamically. As a case study, the algorithm is implemented in a robotic navigation system that controls a Denning MRV-III mobile robot. The system is extensively evaluated using statistical methods to verify its learning performance and to understand the relevance of different design parameters on the performance of the system.

Read the paper:

Learning Adaptive Reactive Controllers

by Juan Carlos Santamaria, Ashwin Ram

Technical Report GIT-CC-97/05, College of Computing, Georgia Institute of Technology, Atlanta, GA, January 1997
www.cc.gatech.edu/faculty/ashwin/papers/git-cc-97-05.pdf

Systematic Evaluation of Design Decisions in Case-Based Reasoning Systems

Two important goals in the evaluation of artificial intelligence systems are to assess the merit of alternative design decisions in the performance of an implemented computer system and to analyze the impact in the performance when the system faces problem domains with different characteristics. Achieving these objectives enables us to understand the behavior of the system in terms of the theory and design of the computational model, to select the best system configuration for a given domain, and to predict how the system will behave when the characteristics of the domain or problem change. In addition, for case-based reasoning and other machine learning systems, it is important to evaluate the improvement in the performance of the system with experience (or with learning), to show that this improvement is statistically significant, to show that the variability in performance decreases with experience (convergence), and to analyze the impact of the design decisions on this improvement in performance.

We present a methodology for the evaluation of CBR and other AI systems through systematic empirical experimentation over a range of system configurations and environmental conditions, coupled with rigorous statistical analysis of the results of the experiments. We illustrate this methodology with a case study in which we evaluate a multistrategy case-based and reinforcement learning system which performs autonomous robotic navigation. In this case study, we evaluate a range of design decisions that are important in CBR systems, including configuration parameters of the system (e.g., overall size of the case library, size or extent of the individual cases), problem characteristics (e.g., problem difficulty), knowledge representation decisions (e.g., choice of representational primitives or vocabulary), algorithmic decisions (e.g., choice of adaptation method), and amount of prior experience (e.g., learning or training). We show how our methodology can be used to evaluate the impact of these decisions on the performance of the system and, in turn, to make the appropriate choices for a given problem domain and verify that the system does behave as predicted.

Read the paper:

Systematic Evaluation of Design Decisions in Case-Based Reasoning Systems

by Juan Carlos Santamaria, Ashwin Ram

In Case-Based Reasoning: Experiences, Lessons, and Future Directions, D.B. Leake, editor, AAAI Press, 1996
www.cc.gatech.edu/faculty/ashwin/papers/er-96-05.pdf