Posts Tagged ‘interactive drama’

Robust and Authorable Multiplayer Storytelling Experiences

Interactive narrative systems attempt to tell stories to players capable of changing the direction and/or outcome of the story. Despite the growing importance of multiplayer social experiences in games, little research has focused on multiplayer interactive narrative experiences. We performed a preliminary study to determine how human directors design and execute multiplayer interactive story experiences in online and real world environments. Based on our observations, we developed the Multiplayer Storytelling Engine that manages a story world at the individual and group levels. Our flexible story representation enables human authors to naturally model multiplayer narrative experiences. An intelligent execution algorithm detects when the author’s story representation fails to account for player behaviors and automatically generates a branch to restore the story to the authors’ original intent, thus balancing authorability against robust multiplayer execution.

Read the paper:

Robust and Authorable Multiplayer Storytelling Experiences

by  Mark Riedl, Boyang Li, Hua Ai, Ashwin Ram

in Seventh International Conference on AI and Interactive Digital Entertainment (AIIDE-2011).
www.cc.gatech.edu/faculty/ashwin/papers/er-11-06.pdf

Construction and Adaptation of AI Behaviors in Computer Games

Computer games are an increasingly popular application for Artificial Intelligence (AI) research, and conversely AI is an increasingly popular selling point for commercial digital games. AI for non playing characters (NPC) in computer games tends to come from people with computing skills well beyond the average user. The prime reason behind the lack of involvement of novice users in creating AI behaviors for NPC’s in computer games is that construction of high quality AI behaviors is a hard problem.

There are two reasons for it. First, creating a set of AI behavior requires specialized skills in design and programming. The nature of the process restricts it to certain individuals who have a certain expertise in this area. There is little understanding of how the behavior authoring process can be simplified with easy-to-use authoring environments so that novice users (without programming and design experience) can carry out the behavior authoring task. Second, the constructed AI behaviors have problems and bugs in them which cause a break in player expe- rience when the problematic behaviors repeatedly fail. It is harder for novice users to identify, modify and correct problems with the authored behavior sets as they do not have the necessary debugging and design experience.

The two issues give rise to a couple of interesting questions that need to be investigated: a) How can the AI behavior construction process be simplified so that a novice user (without program- ming and design experience) can easily conduct the authoring activity and b) How can the novice users be supported to help them identify and correct problems with the authored behavior sets? In this thesis, I explore the issues related to the problems highlighted and propose a solution to them within an application domain, named Second Mind(SM). In SM novice users who do not have expertise in computer programming employ an authoring interface to design behaviors for intelligent virtual characters performing a service in a virtual world. These services range from shopkeepers to museum hosts. The constructed behaviors are further repaired using an AI based approach.

To evaluate the construction and repair approach, we conduct experiments with human subjects. Based on developing and evaluating the solution, I claim that a design solution with behavior timeline based interaction design approach for behavior construction supported by an understandable vocabulary and reduced feature representation formalism enables novice users to author AI behaviors in an easy and understandable manner for NPCs performing a service in a virtual world. I further claim that an introspective reasoning approach based on comparison of successful and unsuccessful execution traces can be used as a means to successfully identify breaks in player experience and modify the failures to improve the experience of the player interacting with NPCs performing a service in a virtual world.

The work contributes in the following three ways by providing: 1) a novel introspective reasoning approach for successfully detecting and repairing failures in AI behaviors for NPCs performing a service in a virtual world.; 2) a novice user understandable authoring environment to help them create AI behaviors for NPCs performing a service in a virtual world in an easy and understandable manner; and 3) Design, debugging and testing scaffolding to help novice users modify their authored AI behaviors and achieve higher quality modified AI behaviors compared to their original unmodified behaviors.

Read the dissertation:

Construction and Adaptation of AI Behaviors in Computer Games

by Manish Mehta

PhD dissertation, College of Computing, Georgia Institute of Technology, August 2011.

smartech.gatech.edu/handle/1853/42724

A Case Base Planning Approach for Dialogue Generation in Digital Movie Design

We apply case based reasoning techniques to build an intelligent authoring tool that can assist nontechnical users with authoring their own digital movies. In this paper, we focus on generating dialogue lines between two characters in a movie story. We use Darmok2, a case based planner, extended with a hierarchical plan adaptation module to generate movie characters’ dialogue acts with regard to their emotion changes. Then, we use an information state update approach to generate the actual content of each dialogue utterance. Our preliminary study shows that the extended planner can generate coherent dialogue lines which are consistent with user designed movie stories using a small case base authored by novice users. A preliminary user study shows that users like the overall quality of our system generated movie dialogue lines.

Read the paper:

A Case Base Planning Approach for Dialogue Generation in Digital Movie Design

by Sanjeet Hajarnis, Christina Leber, Hua Ai, Mark Riedl, Ashwin Ram

19th International Conference on Case-Based Reasoning (ICCBR-11), London. 
www.cc.gatech.edu/faculty/ashwin/papers/er-11-05.pdf

Real-Time Case-Based Reasoning for Interactive Digital Entertainment

(Click image to view the video – it’s near the bottom of the new page.)

User-generated content is everywhere: photos, videos, news, blogs, art, music, and every other type of digital media on the Social Web. Games are no exception. From strategy games to immersive virtual worlds, game players are increasingly engaged in creating and sharing nearly all aspects of the gaming experience: maps, quests, artifacts, avatars, clothing, even games themselves. Yet, there is one aspect of computer games that is not created and shared by game players: the AI. Building sophisticated personalities, behaviors, and strategies requires expertise in both AI and programming, and remains outside the purview of the end user.

To understand why authoring Game AI is hard, we need to understand how it works. AI can take digital entertainment beyond scripted interactions into the arena of truly interactive systems that are responsive, adaptive, and intelligent. I will discuss examples of AI techniques for character-level AI (in embedded NPCs, for example) and game-level AI (in the drama manager, for example). These types of AI enhance the player experience in different ways. The techniques are complicated and are usually implemented by expert game designers.

I propose an alternative approach to designing Game AI: Real-Time CBR. This approach extends CBR to real-time systems that operate asynchronously during game play, planning, adapting, and learning in an online manner. Originally developed for robotic control, Real-Time CBR can be used for interactive games ranging from multiplayer strategy games to interactive believable avatars in virtual worlds.

As with any CBR technique, Real-Time CBR integrates problem solving with learning. This property can be used to address the authoring problem. I will show the first Web 2.0 application that allows average users to create AIs and challenge their friends to play them—without programming. I conclude with some thoughts about the role of CBR in AI-based Interactive Digital Entertainment.

Keynote talk at the Eighteenth Conference on Pattern Recognition and Artificial Intelligence (RFIA-12), Lyon, France, February 5, 2012.
Slides and video here: rfia2012.liris.cnrs.fr/doku.php?id=pub:ram
 
Keynote talk at the Eleventh Scandinavian Conference on Artificial Intelligence (SCAI-11), Trondheim, Norway, May 25, 2011.
 
Keynote talk at the 2010 International Conference on Case-Based Reasoning (ICCBR-10), Alessandria, Italy, July 22, 2010.
 
GVU Brown Bag talk, October 14, 2010. Watch the talk here: www.gvu.gatech.edu/node/4320 
 
Try it yourself:
Learn more about the algorithms:
View the talk:
www.sais.se/blog/?p=57

View the slides:

User-Generated AI for Interactive Digital Entertainment

CMU Seminar

User-generated content is everywhere: photos, videos, news, blogs, art, music, and every other type of digital media on the Social Web. Games are no exception. From strategy games to immersive virtual worlds, game players are increasingly engaged in creating and sharing nearly all aspects of the gaming experience: maps, quests, artifacts, avatars, clothing, even games themselves. Yet, there is one aspect of computer games that is not created and shared by game players: the AI. Building sophisticated personalities, behaviors, and strategies requires expertise in both AI and programming, and remains outside the purview of the end user.

To understand why Game AI is hard, we need to understand how it works. AI can take digital entertainment beyond scripted interactions into the arena of truly interactive systems that are responsive, adaptive, and intelligent. I discuss examples of AI techniques for character-level AI (in embedded NPCs, for example) and game-level AI (in the drama manager, for example). These types of AI enhance the player experience in different ways. The techniques are complicated and are usually implemented by expert game designers.

I argue that User-Generated AI is the next big frontier in the rapidly growing Social Gaming area. From Sims to Risk to World of Warcraft, end users want to create, modify, and share not only the appearance but the “minds” of their characters. I present my recent research on intelligent technologies to assist Game AI authors, and show the first Web 2.0 application that allows average users to create AIs and challenge their friends to play them—without programming. I conclude with some thoughts about the future of AI-based Interactive Digital Entertainment.

CMU Robotics & Intelligence Seminar, September 28, 2009
Carnegie-Mellon University, Pittsburgh, PA.
MIT Media Lab Colloquium, January 25, 2010
Massachusetts Institute of Technology, Cambridge, MA.
Stanford Media X Philips Seminar, February 1, 2010
Stanford University, Stanford, CA.
Pixar Research Seminar, February 2, 2010

Try it yourself:
Learn more about the algorithms:
View the talk:
www.sais.se/blog/?p=57

View the slides:

Drama Management and Player Modeling for Interactive Fiction Games

A growing research community is working towards employing drama management components in story-based games. These components gently guide the story towards a narrative arc that improves the player’s gaming experience. In this paper we evaluate a novel drama management approach deployed in an interactive fiction game called Anchorhead. This approach uses player’s feedback as the basis for guiding the personalization of the interaction.

The results indicate that adding our Case-based Drama manaGer (C-DraGer) to the game guides the players through the interaction and provides a better overall player experience. Unlike previous approaches to drama management, this paper focuses on exhibiting the success of our approach by evaluating results using human players in a real game implementation. Based on this work, we report several insights on drama management which were possible only due to an evaluation with real players.

Read the paper:

Drama Management and Player Modeling for Interactive Fiction Games

by Manu Sharma, Santi Ontañón, Manish Mehta, Ashwin Ram

Computational Intelligence, 26(2):183-211, 2010.
www.cc.gatech.edu/faculty/ashwin/papers/er-09-10.pdf
www3.interscience.wiley.com/journal/123387570/abstract

Authoring Behaviors for Games using Learning from Demonstration

Behavior authoring for computer games involves writing behaviors in a programming language. This method is cumbersome and requires a lot of programming effort to author the behavior sets. Further, this approach restricts the behavior set authoring to people who are experts in programming.

This paper describes our approach to design a system that allows a user to demonstrate behaviors to the system, which the system uses to learn behavior sets for a game domain. With learning from demonstration, we aim at removing the requirement that the user has to be an expert in programming, and only require him to be an expert in the game. The approach has been integrated in a easy-to-use visual interface and instantiated for two domains, a real-time strategy game and an interactive drama.

Read the paper:

Authoring Behaviors for Games using Learning from Demonstration

by Manish Mehta, Santiago Ontañón, Tom Amundsen, Ashwin Ram

ICCBR-09 Workshop on Case-Based Reasoning for Computer Games, Seattle, July 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-09-07.pdf

Emotional Memory and Adaptive Personalities

Believable agents designed for long-term interaction with human users need to adapt to them in a way which appears emotionally plausible while maintaining a consistent personality. For short-term interactions in restricted environments, scripting and state machine techniques can create agents with emotion and personality, but these methods are labor intensive, hard to extend, and brittle in new environments. Fortunately, research in memory, emotion and personality in humans and animals points to a solution to this problem. Emotions focus an animal’s attention on things it needs to care about, and strong emotions trigger enhanced formation of memory, enabling the animal to adapt its emotional response to the objects and situations in its environment. In humans this process becomes reflective: emotional stress or frustration can trigger re-evaluating past behavior with respect to personal standards, which in turn can lead to setting new strategies or goals.

To aid the authoring of adaptive agents, we present an artificial intelligence model inspired by these psychological results in which an emotion model triggers case-based emotional preference learning and behavioral adaptation guided by personality models. Our tests of this model on robot pets and embodied characters show that emotional adaptation can extend the range and increase the behavioral sophistication of an agent without the need for authoring additional hand-crafted behaviors.

Read the paper:

Emotional Memory and Adaptive Personalities

by Anthony Francis, Manish Mehta, Ashwin Ram

Handbook of Research on Synthetic Emotions and Sociable Robotics: New Applications in Affective Computing and Artificial Intelligence, IGI Global, 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-08-10.pdf

Creating Behavior Authoring Environments for Everyday Users

The design of interactive experiences is increasingly important in our society. Examples include interactive media, computer games, and interactive portals. There is increasing interest in modes of interaction with virtual characters, as they represent a natural way for humans to interact. Creating such characters is a complex task, requiring both creative skills (to design personalities, emotions, gestures, behaviors) and programming skills (to code these in a scripting or programming language). There is little understanding of how the behavior authoring process can be simplified with easy-to-use authoring environments that can support the cognitive needs of everyday users and help them at every step to easily carry out this creative task.

Our research focuses on behavior authoring environments that not only make it easy for novices/everyday users to create characters but also provide them scaffolding in designing these interactive experiences. In this paper we present results from a user study with a paper prototype of an authoring environment that is aimed to allow everyday users to create virtual characters. The study aims at determining whether typical computer users are able to create character personalities in specific scenarios and think about characters’ mental states, and if so, then what kinds of user interfaces would be suitable for this authoring environment.

Read the paper:

Creating Behavior Authoring Environments for Everyday Users

by Manish Mehta, Christina Lacey, Iulian Radu, Abhishek Jain, Ashwin Ram

International Conference on Computer Games, Multimedia, and Allied Technologies (CGAT-09), Singapore, May 2009
www.cc.gatech.edu/faculty/ashwin/papers/er-09-01.pdf

Developing a Drama Management Architecture for Interactive Fiction Games

A growing research community is working towards employing drama management components in interactive story-based games. These components gently guide the story towards a narrative arc that improves the player’s experience. In this paper we present our Drama Management architecture for real-time interactive story games that has been connected to a real graphical interactive story based on the Anchorhead game. We also report on the natural language understanding system that has been incorporated in the system and report on a user study with an implementation of our DM architecture.

Developing a Drama Management Architecture for Interactive Fiction Games

by Santi Ontañón, Abhishek Jain, Manish Mehta, Ashwin Ram

1st Joint International Conference on Interactive Digital Storytelling (ICIDS-08), Erfurt, Germany, November 2008
www.cc.gatech.edu/faculty/ashwin/papers/er-08-11.pdf
Follow

Get every new post delivered to your Inbox.

Join 2,433 other followers